Cosmetic surgery in L–space homology spheres

نویسندگان

  • ZHONGTAO WU
  • Zhongtao Wu
چکیده

In particular, let K be a framed knot in a closed oriented three-manifold Y . For a rational number r , let Yr .K/ be the manifold obtained by Dehn surgery along K with slope r . Two surgeries along K with distinct slopes r and r 0 are called equivalent if there exists an orientation-preserving homeomorphism of the complement of K taking one slope to the other; and they are called truly cosmetic if there exists an orientation-preserving homeomorphism between Yr .K/ and Yr 0.K/. When K D U is the unknot in S , there are truly cosmetic surgeries: S p=q .U / Š S p=pCq .U /, and S p=q1 Š S p=q2 .U / when q1q2 1 .mod p/: While p=q and p=.pCq/ are equivalent slopes, p=q1 and p=q2 as above are usually not. By contrast, there are no known truly cosmetic surgeries on a nontrivial knot. Indeed, it is one of the outstanding problems conjectured in Kirby’s problem list, Problem 1.81(1):

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lens space surgeries and L-space homology spheres

We describe necessary and sufficient conditions for a knot in an L-space to have an L-space homology sphere surgery. We use these conditions to reformulate a conjecture of Berge about which knots in S admit lens space surgeries.

متن کامل

On the non-existence of L-space surgery structure

We exhibit homology spheres which never yield any lens spaces by integral Dehn surgery by using Ozsváth and Szabó’s contact invariant.

متن کامل

Nonseparating spheres and twistedHeegaard Floer homology

Heegaard Floer homology was introduced by Ozsváth and Szabó [16]. For nullhomologous knots, there is a filtered version of Heegaard Floer homology, called knot Floer homology; see Ozsváth and Szabó [14] and Rasmussen [18]. Basically, if one knows the information about the knot Floer homology of a knot, then one can compute the Heegaard Floer homology of any manifold obtained by Dehn surgery on ...

متن کامل

Homology lens spaces and Dehn surgery on homology spheres

A homology lens space is a closed 3-manifold with Z-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space M3 may be obtained by an (n/1)-Dehn surgery on a homology 3-sphere if and only if the linking form of M3 is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer...

متن کامل

Lens Spaces Given from L-Space Homology 3-Spheres

We consider the problem when lens spaces are given from homology spheres, and demonstrate that many lens spaces are obtained from L-space homology sphere which the correction term d(Y ) is equal to 2. We show an inequality of slope and genus when Y is L-space and Yp(K) is lens space. 1 2

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011